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Abstract

Dummett (1997) notes particular difficulties with single transferable vote (STV)
and proposes an alternative vote counting system called “Quota/Borda system”
(QBS) to remedy specific difficulties. | propose an alternative system,
structurally related to QBS, which accomplishes similar solutions but has some
significant differences. This alternative system is identical to STV in all aspects
except one. It eliminates candidates in reverse order of their Borda scores rather
than by their current ranking of first-place votes. | designate this system STV
with Borda elimination (STV-B).

STV-B and QBS share general features. They retain proportional representation
from STV. However, they differ from STV is two critical manners. First, both
permit some influence on candidate selection to occur between voting blocks.
Second, they are much more stable than STV when subjected to small changes in
voter preferences.

Outcomes from ST V-B differ from QBS outcomes in two ways. Under STV-B, a
minority that shares some preferences may elect a candidate even if the minority
is not a solid coalition, as is required for minorities under QBS. Further, QBS
always selects Borda winners, either for a minority or overall. STV-B may reject
a Borda winner through emphasis on each voter’s most preferred candidates.



Section 1: Introduction

This paper presents a new solution to the problem of quasi-chaos in the Single
Transferable Vote (STV) system of vote counting. Single Transferable Vote with
Borda elimination improves upon STV by basing the elimination of loosing
candidates on their Borda scores.!Arrow’s (1951) famous result showed that all
voting systems behave perversely to some extent. However, some behave worse
than others do. STV arguably is one of the more problematic voting systems.
The popularity of STV is largely due to the proportional representation of
minorities which arises under STV. STV-B retains proportional representation and
shares features with the Quota\Borda System developed by Dummett (1997).2

Single transferable vote (STV) is a method of calculating election results that
guarantees proportional representation for solid coalitions — sets of voters who
share a set of most preferred candidates -- under reasonable conditions. Several
countries and dozens of nongovernmental organizations use STV (Tideman 1995)
and it has clear applications for corporate boards. Dummett notes that although
STV achieves proportional representation, its selection of particular candidates is
problematic. He is particularly concerned with the “quasi-chaotic” nature of STV
and the closely related phenomenon that STV considers more of some voters’
preferences than it does other voters’ preferences (pg 150). Dummett identifies
four features of “quasi-chaos.” 1) Small changes in voters’ preferences can cause
large changes in outcomes (pg 142). 2) These changes in outcomes are non-
monotonic® (pg 148). 3) The changes can affect candidates who were not involved
in the changes of preference (pg 146). 4) Voters may not be able to anticipate
effects of a change in their preference (pg 142). The latter three features arise
from the first.

The first feature provides a link to chaos in the mathematical sense. Weisstein
(1999) notes that a characteristic of chaos is “that initially nearby points can
evolve quickly into very different states.” In chaotic systems series of changes
cause further changes so that small variations in initial states can lead to large
differences in later states, the “Butterfly Effect”. Dummett provides an example,
detailed below, in which the role of the metaphorical butterfly is played by a

| appreciate the suggestions and constructive critiques of Prasanta Pattanaik, Bharat Hazari, and
Jamie Mustard. All remaining errors are mine.
1 Detailed descriptions of these voting systems follow preliminary remarks. Since both systems
arewell over acentury old, they may have been combined before. | have found no evidence of it
happening, but a more accurate claim should end with “to the author’ s knowledge” .
2 Hereinafter smply “Dummett”.
3 Non-monotonicity is also called “nonnegative responsiveness’ and means that voters changing
preferences by ranking awinning candidate higher can result in that candidate not being elected, or
that lowering the ranking of alosing candidate can result in that candidate’ s election. Nonnegative
responsiveness leads to manipulability (in the Gibbard-Satterthwaite sense) at the relevant
preference profiles.



fraction of a percent of voters. They flutter wings by switching rankings of one
pair of candidates. The resulting tornado is a reversal of fortunes for six of eight
candidates, including a counterintuitive election of the candidate who was lowered
in the rankings.

Dummett proposes a vote counting system called the “Quota/Borda system”
(QBS) (pg 154) to remedy quasi-chaos. STV-B accomplishes similar solutions but
has some significant differences. These differences include potential representation
of minorities that are not solid coalitions, emphasis on each voter’s most preferred
candidates, and a level of stability intermediate between QBS and STV. STV-B is
identical to STV in all aspects except one. Candidates are eliminated in reverse
order of their Borda scores rather than by their current ranking by first-place votes
as in STV.

This paper will proceed through five sections. The introduction continues by
explaining the traditional voting systems: Borda and STV. Section 2 explains
Dummett’s concerns with STV. Section 3 describes Dummett’s solutions through
QBS. Section 4 presents the novel voting system, STV-B, then compares and
contrasts it with STV and QBS. Section 5 concludes.

Borda

Jean-Charles de Borda in 1770 proposed the vote system now designated by his
name. In the Borda system, voters rank candidates#through n levels with the most
preferred candidate receiving a rank of one and the least preferred receiving a rank
of n (Levin and Nalebuff 1995). Borda scores equal:

B :gn—R

1=1

where B is the Borda score for candidate c, [V| is the number of voters, n is the

number of candidates to be ranked by each voter, and R;. is voter i’s ranking of
candidate c.

The candidate with the highest score is the Borda winner. Multiple candidates
may be selected by choosing the set of candidates with thehighest scores. Borda
voting considers an arbitrarily deep set of preferences for all voters, and that
depth can easily be tailored to fit need. An ordinal ranking of candidates from high
Borda score to low is called their Borda ranking (Levin and Nalebuff 1995).

4| refer to “candidates’ however all methodsin this paper apply equally to any selection from a
specified set of aternatives.



STV

Thomas Hare developed STV in 1859. The following description is from Levin
and Nalebuff (1995) and Tideman (1995). STV is a vote counting system based
upon three principles: listed ordinal voter preferences (as with Borda), a quota of
votes required for election, and the transferal of votes between candidates. Voters
list candidates from most preferred to least preferred. The quota (q) is based
upon the number of electoral seats (e) to be filled and the number of voters. This
quota is the lowest number of votes that could be required for election without the
possibility of electing more candidates than the number of seats to be filled:>

q=gﬂg+l
®+ig

where the bracket notation [x] denotes the largest integer less than x.
Votes transfer in STV under two conditions. If a candidate receives more than the

quota of votes, the excess is distributed to candidates who were ranked lower in
voters’ preferences. The transfer fraction (excess) is:

where f. is the fraction of each vote for candidate c that is to be transferred to each
voter’s next ranked candidate, and w, is the number of votes for candidate c. If no
candidate receives the quota of votes, the candidate with the fewest votes is
eliminated and votes for that candidate transfer to each supporter’s next highest
choice. 6

Vote counting under STV proceeds though the following branched and looped
algorithm.

1) Note the number of seats to be filled.

2) Count the number of votes cast.

3) Compute the quota.

4) Count the first place votes for each candidate.

5 Election of an extra candidate would be prevented by addition of afraction of avote rather than a
whole vote. In elections with low numbers of voters, significant distortions can result from
“rounding up” to the next integer. | will restrict discussion to large sets of voters.

6 There are many variationsin the vote transferral process based on expediency and logical
considerations. The method presented here is common for theoretical applications and does not
substantially affect any conclusions in this paper.



5) Compare the quota to the number of first place votes for each candidate.
If the sum of first place votes is less than the quota, all seats are filled.”
Stop.
If all candidates have fewer first place votes than the quota, go to step 11.
If at least one candidate has at least the quota of first place votes, proceed

with step 6.

6) Declare any candidates with more than the quota of first place votes to be
seated.

7) Compute transfer fractions for each seated candidate.

8) Transfer f_ of each vote (or fraction of vote) for each seated candidate ¢ to

the next ranked candidate for each voter ranking candidate ¢ as the most
preferred (remaining) candidate.

9) Remove all seated candidates from all voters’ rankings.

10)  Goto step 4 counting all remaining votes, full and fractional.

11)  Identify the candidate c with the fewest first place votes.

12)  Transfer all votes for candidate c to the next highest ranked candidate for
each voter for whom c is the most preferred (remaining) candidate.

13)  Remove the candidate ¢ from all voters’ rankings.

14)  Goto step 4 counting all remaining votes, full and fractional.

Each series of one counting of values and seating or exclusion of candidates is
called a “round” of vote counting.

STV example

Consider an example. Table 1 is a set of preferences based upon Dummett page
148 that illustrates the mechanisms and significant characteristics of Borda, STV,
QBS, and STV-Borda8. Disregard column I11_, which will be used in extensions.
In our example, we fill four seats. There are 99,995 votes. Thus, the quota is
20,000. Candidate cg has 21,001 first place votes, exceeding the quota with a
residual of 1001 votes. A fraction (20,000/21,001 or 0.952) of each vote is
sufficient to seat candidate cg. The remainder of each vote is distributed to
candidates c and cc, each voter’s second preference. Table 2 presents the number
of votes held by each candidate through the wvarious rounds of election,
elimination, and transfer. A number in italic indicates a candidate’s election. An
underlined number indicates a candidate’s elimination. Dashes indicate that the
candidate is no longer under consideration.

7 This condition and subsequent parenthetical expressions can only be met after at least one loop
through the algorithm.

8 This table yields results generally consistent with Dummett's. However, | was unable to match
his vote tallies exactly.



Table 2 shows the effects of the selection of candidate cg. In the second round,
500 votes transfer to candidate c, and 501 transfer to candidate cc, in accordance
with the preferences listed in Table 1. No candidate meets the quota of votes in
round two, so the candidate with the fewest votes, cp, is eliminated. Round three
shows cp’s supporters’ votes transferred to their next highest choices, 1595 to
candidate cc and 8000 to candidate cs. Again, no candidate has sufficient votes
for election. So, the candidate with the fewest current votes, ca, iseliminated.
Votes originally assigned to c, in Table 1, columns | to IV and partial votes
transferred to ca from cg (column V), transfer to each voter’s next highest
preference in round four. Some votes, 4611, transfer to cc and 2722 to cu.
Candidate cpwould have received 3600 except that cp has already been eliminated,
so the votes transfer to cg, the voters’ next highest remaining preference.
Candidates cc and cg are seated. Residual votes transfer from cc and cg to ¢z and
cy in round five. Again, no candidate meets the quota and cg is eliminated. Votes
transferred from cr effect the election of cy, completing the slate of four seats.
These results are sensitive to small changes such as from 11l to 11l_ in Table 1 as
will be addressed in section 2.

STV and proportional representation

Although Hare designed STV to reduce the perceived problem of wasted votes, its
most popular feature is proportional representation (PR) of solid coalitions of
voters (Tideman 1995, Levin and Nalebuff 1995). If at least the quota of voters
ranks the same set of candidates before any other candidates that set of voters V;
is a “solid coalition” that “supports” the set of candidates C,. PR arises from the
vote transferal process. Proportional representation is inexact due to the
discontinuous nature of electoral seats:

UJ

PR =] .
049 O
Definitions:

Ri is voter i’s ranking of candidate c.

A solid coalition is a set of votersVs UV supporting the set of candidatesCs U C

such that:
1) a<iVel < |V;
2) Ris< Ri,cDI 0OV,,s0OC,,cC\C,;

3) There does not exist aCs 0 Cs s.t. Cs satisfies condition 2 and [Cs | >PR.

Theorem: Solid coalitions gain proportional representation under STV. A set of
candidates Ce [ Cs will be seated; |C,| < PR iff |C{ < PR.



Proof, following (Tideman 1995).

Case 1: |C4 <PR, C, = C,.

Votes from V; transfer to other candidates within Cg before transferring to any
outside of C,. Therefore, C receives at least q(PR) votes and is seated.

Case 2: [C;|> PR,
Case 2a: Candidates C, are eliminated from C,. Votes for C, transfer to other
candidates C; = C; \C, before transferringto anyc JC\C,

Case2a1: No dOC, receives votes from VAV, when F; |= PR, C, receive q(PR)

votes and is seated.
Case 2a2: At least one d receives votes from W\Vs, C; receive more than q(PR)

votes and soC. ,|C; |2 PR, is seated.

Case 2b: No candidates C, are eliminated from C.. Fs |> PR s seated.

Section 2: Acritique of STV

Consider Table 1 again. The bold font denotes preferences that are eventually
considered in the election presented in section one. Notice that STV has
considered only the first preference of some voters and considered through the
fifth preferences of other voters. Dummett (1997, pg 150) notes that STV is
quasi-chaotic because it takes into account only the first choices of some voters,
and less preferred choices of others, giving them as much weight as the first
choices.

STV election results change dramatically from the small change in preferences
from column 111 to column 111’ (Table 3 in contrast to Table 2). Dummett shows
that under STV this change of preferences of only 100 of 99,995 voters changes
outcomes dramatically and non-monotonically. One hundred voters switched
from preferring ca to Cp to preferring cp to ca. Round one remains the same as in
the previous example; however, round two differs in that candidate cg is now
eliminated instead of cp. Notice two consequences. First cg has been eliminated
first whereas previously cg was seated. Second, the second preferences of cg’s
supporters are considered in round three, rather than the second preferences of
Cp’s supporters as in the case above. Clearly, the process of elimination and
election will follow a different path now that different preferences are being
considered. The final result of the small change in preferences in column IlI is
rejection of cc, ¢ and cy and election of cp, cg and ¢k in their places.



Notice that lowering ca in the preference ranking resulted in c, being seated, a
clear examp le of non-monotonicity. Further, results changed for c¢, cg, ¢, Cg, and
cy although they were not involved in the change of preferences. Dummett
stresses that this dramatic change is a result of the order in which candidates are
eliminated under STV, notes peculiar results from actual elections, and documents
that this instability has been known since at least the Royal Commission on
Electoral Reform of 1910.

Tables 1, 2 and 3 illustrate the three step process leading to quasi-chaos in STV.
First voters change rankings of candidates. Second, the changed ranks change the
order of elimination of candidates directly. The third is the transferal of votes.
The third step compounds theeffects of the second by changing the vote rankings
of the candidates, thereby potentially changing the order of elimination. These
changes propagate through all the rounds of elimination and vote counting in STV.
The result is quasi-chaos, small changes trigging large, nonmonotoic, and
unanticipatable changes in electoral outcomes.

Section 3: Quota/Borda System

Dummett proposed the “Quota/Borda system” (QBS) which achieves
proportional representation while avoiding quasi-chaos by manually checking for
solid coalitions of voters. QBS bases the selection of candidates on Borda rankings
while retaining quotas and proportional representation from STV. QBS checks
successively for solid coalitions equaling the quota, then for double the quota,
through progressively higher multiples. Dummett suggests limiting coalitions to
minority coalitions since majorities may not need protection of their proportional
representation.

Definitions

The set of QBS winners Q consists of candidates Qs selected by solid coalitions V;
and candidates Q, selected by voters at large.

OV, OC, st B; >BHjHQ,kDC\Q,, Q, [=min(PR, €. )

Let Q, be the set defined by
af Y= @

Q. DCVHQ k

where

DJ DQo!k DC\%JQS UQo %BJ >Bk!

and
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R.[=e-

The QBS winners are Q = %_J Q, %J Q.

uQ,

Dummett reasonably makes no provision for ties as they are very unlikely given
the large Borda scores involved in real elections.®

Dummett built QBS on the Borda system, and so it includes information from
voters” complete ordinal rankings of candidates. It is weakly monotonic in
changes of preferences. If voters change their preferences ranking so that some
candidate X is higher in their preferences, candidate X is no less likely to be seated
thanwithout the change in preferences because candidate X’s Borda score must
increase while others must decrease. Selection of candidates only changes under
QBS when Borda rank or solid coalitions change. Therefore, QBS is not quasi-
chaotic.

All voters contribute to choosing the solid coalitions’ candidates. The solid
coalition chooses a supported set of candidates. If the supported set is greater
than PR, the voters as a whole decide which candidates are selected from the
supported set. Dummett points out that this arrangement is arguably more
democratic than STV in that the preferences of more people are considered in the
selection of candidates. He argues further that this democratic element does not
negate coalition preferences as the coalition can, by limiting their pool of
candidates to the number of seats assigned to them, choose candidates without
influence from other voters.

Section 4: Single Transferable Vote with Borda Elimination

Single Transferable Vote with elimination based on Borda scores (STV-B) is the
same as STV except in the rule for eliminating candidates. Under STV, candidates
are eliminated in any particular round in the order oftheir vote tally in that round.
In STV-B candidates are eliminated based on their Borda scores as computed using
the voters’complete (initial) rankings. Make two changes to the algorithm for
STV to get the algorithm for STV-B. Add a line 3' “Compute Borda scores.”
Replace line 11 with “Identify candidate ¢ with the lowest Borda score of the
(remaining) candidates.”10

9 Pairwise comparison overall then within solid coalitions could resolve ties.
10 Ties may be resolved with pairwise comparison as suggested for QBS.

11



Consider STV-B in practice with the preferences from Table 1 resulting in the
Borda scores in Table 4. The preferences ignored by STV in the selection above
were ordered so that STV-B would yield identical results to STV prior to the
change of preferences in column I11. With STV-B the reason that each candidate is
eliminated has changed. Candidate cp is eliminated first, c, second and cc¢ third
because they have the lowest remaining Borda scores at the time. All other
processes remain the same as in the STV initial example. With the sole exception
that c, receives 100 fewer votes and cp receives 100 more in rounds 1 and 2 than
they do in Table 2. Revising column 111 to I1I' does not alter the rankings of the
candidates Borda scores, and so does not affect the election.

STV-B shares some features with STV and with QBS, but it does not result in the
same outcomes as either. STV-B achieves proportional representation without
quasi-chaos but without the restriction of solid coalitions of QBS. Both STV-B
and QBS consider complete preference rankings by using Borda scores. Also,
both permit arguably more democratic outcomes than STV in that all voters
potentially contribute to selection of candidates from sets supported by
coalitions. STV-B is nonmonotonic like STV, and unlike QBS. In addition, like
STV and QBS!, under STV-B switching rankings of two candidates can affect
other candidates. However, in the non-quasi-chaotic environment of STV-B, these
latter two traits emerge as linked to a kind of minority representation.
Nonmonotonicity and impacts on other candidates arises from vote transferal,
which also promotes election of candidates from minorities that share preferences
but are not solid coalitions.

STV-B vields proportional representation of solid coalitions.

The proof for proportional representation for STV applies equally to STV-B.
Since STV-B transfers votes from higher ranked to next lower ranked candidates, it
shares PR with STV. Votes cast by a solid coalition transfer to supported
candidates before any of the votes transfer to lower ranked candidates.

Coalitions affect other coalitions’ selections in STV-B and QBS.

Suppose that a solid coalition supports more candidates than the number of seats
they may fill by PR. At least one of those candidates will be eliminated. Since all
voters contribute to candidates’ Borda scores and candidates are eliminated by
Borda ranking, all voters potentially contribute to the selection of candidates from
sets supported by solid coalitions. Likewise, minority coalitions contribute to the

11 Suppose Borda scores for three candidates are close. |f some voters reverse the rankings of the
candidates with the highest and lowest scores, the Borda rank of the intermediate candidate can
change.

12



selection of candidates supported by the majority. It may be reasonable to expect
voters to list moderate candidates supported by other voting blocks (coalitions or
majority) above more extreme candidates supported by those other voters. If so,
STV-B promotes election of moderate candidates,as does QBS for the same

reason.
Theorem

If minorities support more than PR, then the majority can force the elimination of
any candidate supported by the minority.

Proof
Let By, the “subset specific Borda score,” be the Borda score for candidate c,
considering only the votes cast by voters in set V, UV . By denotes the Borda

score of some candidate ¢ considering only the votes cast by the voters in a
minority solid coalition Vy, where “minority” indicates that Y [< 0-5Y | Order the

candidates such that By, > By, >...> BN,F i

The maximum difference in the minority specific Borda scores between candidates
Cy supported by a minority solid coalition Vy:

BN,l - BN,|cN\ = VN N:N |_1)

Suppose that each voter in VA\Vy ranks the candidates Cy in the reverse order of
their minority coalition specific Borda scores. The difference in majority specific
Borda scores for the minority candidates is:

B,i~ BJ,|cN| = VJ FFN |_1)
where V; = VIV,

The candidate most preferred by a minority solid coalition would be eliminated
first among that coalition’s supported candidate, if the minority’s most preferred
candidate had the lowest overall Borda score of all the supported candidates. In
order for the majority to reverse the Borda rankings of candidates supported by a
minority solid coalition the following inequality must hold:

BJ,l_B >BN,1_BN,|cN| .

JJeyl

This simplifies to:

¥ol7 ¥ut

13



which is true by definition of minority

M ajorities can likewise force the elimination of a minority’s most preferred
candidate under QBS by the same proof.

14



STV-B is not quasi-chaotic.

Changes in preferences can alter STV outcomes in three ways. 1) A candidate can
be raised above or lowered below the quota. 2) The change in preferences can
directly change the order of elimination of candidates. 3) The firsttwo ways can
change the transferal of votes, which in turn can alter the order of elimination. The
first way applies to any voting system and applies equally to STV and STV-B.
The other two show substantial differences.

The second way functions more precisely in STV-B than in STV. Borda scores
contain more information than do tabulations of current first place votes in STV.
Since they contain more information, Borda scores allow for more robust
differentiation between candidates. In STV, depending upon which elements of
preferences happen to be counted at each round of elimination, large changes in
preferences may not alter the order of elimination, but small changes may. In
STV-B the relationship between changes in preferences and changes in order of
elimination is precise. For the Borda rankings of any two candidates ¢ and d to
change, excluding the possibility of ties, individual voter rankings must change to
the following degree:

Bc - Bd < ERLC - Ri,dv

1=1

c,d OC.

The third way drives quasi-chaos (Dummett, pp 142, 149). STV’squasi-chaos is
a result of vote transferal interacting with the rule of candidate elimination. In
STV-B the initial Borda scores fix the order of elimination. Small changes in
preferences can change outcomes between nearly tied candidates, but effects do
not compound through changing the order of elimination. Thus, STV-B is not
quasi-chaotic.

Minoritiesthat arenot solid coalitions may gain representation under
STV-B.

Theorem
STV-B can elect candidates popular among non-solid coalitions even without
those candidates receiving votes from outside the non-solid coalition.

Proof
Let a non-solid coalition be a set of voters that support a set of candidates
according to the definition of solid-coalition except that some of the voters

15



Vy OVsin the non-solid coalition rank one unsupported candidate x before at
least one supported candidate d:

Ox OV,0g OC\C,, st R,, <R,,,d0OC

g
Consider two special cases.

1) If each ghas either been seated or eliminated at the time of transferal of votes
to each g, then all votes transfer back to supported candidates and the non-
solid coalition gains identical representation as if it were a solid coalition.

2) Suppose that |V,| = g, all voters not in V\ rank the supported candidates last,
and that at least one g is seated with votes equaling the quota including votes
from V. No votes transfer back from g to the supported candidates. Then,
the non-solid coalition will not have enough votes to effect the election of any
supported candidate.

Thus, non-solid coalitions may gain proportional representation under STV-B
through the vote transferal process, but will not necessarily gain representation.

STV-B is nonmonotonic.

STV-B is nonmonotonic as is demonstrated in Table 5. This table shows a simple
election with seven voters filling two seats. The quota is three. Columns | to VII
present initial rankings. The STV-B selection process begins with eliminating cy in
the first round as cy has the lowest Borda score. In round two, ¢y and c; have
three votes each and take their seats. If we replace the rankings in columns VI and
VIl with VI’ and VII’ candidate c; increases in Borda score. With the new
rankings, round one sees ¢y eliminated. In round two, cy’s vote transfers to cy and
Cy is seated. In round three no candidate meets the quota, so the remaining
candidate with the lowest Borda score, ¢z, is eliminated. Increasing c;’s Borda
score has resulted in ¢; loosinga seat. STV-B is nonmonotonic.

Under STV-B, changesin rankings of two candidates can alter outcomes for
other candidates.

Table 5 also demonstrates that under STV-B, switching the rankings of two
candidates can alter outcomes for other candidates. Rankings changed for ¢y andc;
whereas outcomes changed for cy. If a change in preferences causes the election of
one candidate rather than another, different votes transfer to remaining candidates.

16



STV-B emphasizes higher ranked preferences.

STV-B retains STV’s emphasis on each voter’s higher ranked candidates. When
selecting for election, both are structured to consider a more preferred candidate
before less preferred candidates. Herein lies the central difference between STV-B
and QBS. QBS selects according to Borda rank, first for solid coalitions, and then
for the entire body of voters. Effectively, QBS removes the lowest Borda-ranked
candidates, except those supported by solid coalitions. STV-B removes the lowest
Borda-ranked candidates, while checking for solid coalitions or any other set of at
least qvoters whose highest remaining preferences support a candidate.

Section 5: Conclusions

Dummett’s QBS and the currently proposed STV-B both offer significant
improvements over STV. QBS achieves proportional representation for solid
coalitions of minority voters and monotonicity while avoiding quasi-chaos and
reducing effects on additional candidates when voters switch rankings of some
candidates. STV-B and QBS both permit voting blocks (coalitions or majority) to
contribute to the selection of candidates from other voting blocks. STV-B also
achieves PR without quasi-chaos and reduces effects on additional candidates, but
IS nonmonotonic, emphasizes each voter’s higher ranked candidates, and is
compatible with representation of minorities that do not constitute solid
coalitions.

Electoral systems that use STV should consider switching to STV-B or QBS in
order to avoid quasi-chaos while retaining proportional representation. Electoral
systems should also consider that changing from STV to STV-B or QBS also
results in voting blocks potentially contributing to the selection of candidates from
other voting blocks. The selection between STV-B and QBS pivots on the trade-
off between representation of nonsolid minorities and counter-intuitive results
such as Nonmonotonicity and effects on third candidate outcomes when voters
change the rankings of other candidates.

17
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Table 1: Preference ranking of 99995 voters.
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Second row is number of voters with each

preference. Third row gives first preference of each set of voters. Lower preferences
are given in descending order through the tenth row. Bold indicates preferences

considered by STV.

Table 2: STV results using initial preferences

Round A
10433
10933

~No o, WNER

B
21001

C

D

E

13936 9595 11639
14437 9595 11639

16032
20643

11639
11639
12116

F
12051
12051
12051
12051
12051

Bold indicates candidate selected. Underline indicates candidate eliminated.

Table 3: STV results using changed preferences

Round A
1 10333
2 10833
3 20503
4 -
5 -
6 @ -
2

B
21001

C
13936
14437
14437
14650
16431
17596
19995

D
9695
9695
9695

E
11639
11639
11639
11639
19639
21848

Bold indicates candidate selected. Underline indicates candidate eliminated.
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Table 4: Borda scores of the candidates in Table 1.

Il
295245
335273
385070
258283
346245
342037
334311
503396

IOMMOOW@>

I
295145
335273
385070
258383
346245
342037
334311
503396

Ranking

RO MWOLNO N

Bold indicates changes induced from change in preferences from column 111 to I11°.

Table 5: Example of nonmontonicity and third candidate effects in

STV-B
I Il Il
V4 Z Y
w W Z
X X w
Y Y X

<

<XNs Z
NS < X

<NXs <

N X S <

VI

< XNZ

VI Borda

Scores
Y Z 11
w Y 8
Z X 9
X W 14

Election with seven voters selecting between four candidates to fill two seats.

Quota is three.
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Borda'
Scores
13
8
7
14



