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Abstract. A random sample is available from a multivariate distribution
having a bounded density, which is assumed to satisfy a mild additional
condition. A finite collection of histogram estimates of the unknown
density is constructed, whose cardinality increases algebraically fast
with respect to the size of the random sample. A histogram selection rule
is introduced, which is shown to be asymptotically optimal relative to

integrated squared error loss.

1Th'is research was supported in part by National Science Foundation Grant
MCS83-01257.

AMS 1980 subject classifications. Primary 62G30; secondary 62G99.

Key words and phrases. Density estimation, histogram, selection rule,
asymptotic efficiency.




1. Statement of the main result. Let xl,xz,... be independent

d

R" -valued random variables having common absolutely continuous distribution

P with bounded density p. Let Pn denote the empirical distribution of

X]""’Xn’ defined by

= VLurs. .
P(A) = —#{i: 1<i<n and X,eA} .
Let Rf_ denote the collection of d-tuples of positive numbers. Choose

d

a = (a],...,ad)e'lz and b = (b],...,bd)e Rg ; set h = (a,b). Consider

the histogram estimate Pnh of p defined as follows: Let & = (2],...,2d)

denote an arbitrary d-tuple of integers. Set

d
= .+ (2.-1)b. .+ 2.b.) .
Ihz #[aj (2J ])bJ, 3 QJbJ)

Each d-dimensional interval Ihz has volume vy, = H? bj; the collection of

all such intervals forms a partition of Rd . Finally, set

P (I ,)
- n'"hg
(See page 21 of Kendall and Stuart, 1977, for a picture of a bivariate histogram

based on a sample of size n = 9,440.) The integrated squared error loss of

Php 23S N estimate of p is given by

Lan = J(pnh-p)z - V]'h‘ ) PalTng) - 'v‘zgé Pnllng)P(Ipg) * Jpz :

Let Hn denote a finite subset of Rg x Ri whose cardinality increases

algebraically fast with n; that is, 1imn n'c#(Hn) =0 forsome c>0. A

histogram selection rule hn is an Hn-va1ued function of X]""’Xn' Clearly

th
My tah —

.
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here it is understood thqt he Hn‘ The selection rule hn is said to be

asymptotically optimal if

[ thn
1im | —=—— | =1 with probability one .
n LMing th

Set

(see Section 2 for motivation). Let Hn be a value of h that minimizes
Knh' It will be shown below, under a mild condition on p, that the

histogram selection rule ﬁn is asymptotically optimal.

CONDITION 1. There are positive constants o and B8 such that
J(ph-p)2 3_a(vﬁ A1) for n>1 and he H -

Here s At = min (s,t). Condition 1 is satisfied if, say, there is
some nonempty open subset of Rd on which the derivative of p exists

and is continuous and nonzero. For an alternative set of assumptions which

guarantees that this condition is satisfied, at least when d = 1, see

Freedman and Diaconis (1981).
THEOREM 1. If Condition 1 holds, then Hn 18 asymptotically optimal.

For other theoretical results on the selection of a histogram see
Freedman and Diaconis (1981); Chow, Geman and Wu (1981, 1983); and Burman
(1984). For an analogous result on kernel density estimates see Stone
(1984). The latter two papers were written after the original version of

this paper.



2. Motivation for Kn‘ Ideally, h should be chosen to minimize

2 1 02 2
Lo = P72 - PRI ) = T (0L
nh Vpg N he Vg n h hg
but the quantity P(Ihz) is unknown. The estimate Pn(Ihz) of P(Ihz)
leads to the biased estimate Pg(lhz) of Pn(Ihz)P(Ihz)' It is easily
checked that
_n P2(I ) - Pn(Ihz)
n-1 "'n'"hg n-1
is an unbiased estimate of Pn(Ihz)P(Ihz); that is,

P (I

n_ 52 n hz) _ - pl
E[F-‘T Ph(lhg) - = ]' ELP(TpgP(Ipg)] = PR(Ipp)
This leads to the following histogram selection rule: choose h to minimize
P (I, ,)
S 2 _ 2 n_ 52 __n‘"hg
nh ~ vy % Prn{Thg) Vi, % [;-1 Pr(Thg) n-1 ]

=1 (2 _ntl 2
- n-1 % Pn(Ihl)) :

An inessential simplifying approximation leads to the formula for Knh given
in Section 1. For an alternative motivation in terms of cross-validation

see Rudemo. (1982).

3. Proof of Theorem 1. Recall that p 1is assumed to be bounded and

that the cardinality of Hn increases algebraically fast with n. Define

the density p, on Rd by p.(x) =P(I,,)/v, for xel_ ,. Set
h h he’’ "h h

17
Gnh = 'ﬁ% ph(x'i) = Eph(x) ’
1 n
Gy = 5 ] POXp) - ER(X)



(o 002 4 L
Jnh J(ph p)” + nvp ?
and
) 1
Jnhr = vy A1+ v, for r >0
IGnh-GnI
LEMMA 1. IfFf Condition 1 holds, then 1im m%x —5 = 0 with
n nh

probability one.

LEMMA 2. For all r > 0

)2 1

‘ﬁV‘l = 0 with probability one.
h

. 1
1im max —— |J(p -p
n h Jnhr‘ nh Th

The proofs of these two lemmas will be given at the end of the paper.

To prove that ﬁn js asymptotically optimal it suffices to show that

lI'nh""'nh'(Knh"Knh)I

* th'

Tim max

T = 0 with probability one.
n h,h' nh

To verify (1) it suffices to show that

L -
inf min jﬂb-> 0 with probability one
n h “nh
and
L po-b o =(K =K ) ]
1im max nh Jnh_+Jnh nh'_ . 0 with probability one .
n h,h' nh  “nh'

Observe that

Lop = J(pnh-p)2 = f(pnh-ph)2 + J(ph-p)2 -

It now follows easily from Condition 1 and Lemma 2 that (2) holds.

By elementary algebra

2

= 2 2
Lah = Koh - 26, - Jp = 2(6,p-6,) + zj(pnh'ph) -

th

(1)

(2)

(3)



It now follows easily from Lemma 1 and Lemma 2 that (3) holds.
Thus the proof of Theorem 1 is complete once the two lemmas are verified.

To prove Lemma 1 write

10 -
Gph - Gn=F§Z’ih— nh °?
where
Zin = Pp(X) = p(X5) - E(py(X) - p(X,)) .
Then Z i > 1, are independent and identically distributed random variables

ih?

having mean zero. Since p is bounded, there is a positive constant <c

independent of h such that Izihl < c and Var(Zih) f_cuﬁ, where

us = J(ph—p)z. By Bernstein's inequality (see Hoeffding, 1963)
Pr(|7nh|3t) < 2 expl -tA/2(1+x/3)], where 0 < A _<_t/u§ and T = nt/c.

Choose e > 0. Suppose that u, > n72 Set t = ne'l/zuh and

A= ne'l/z/uh < 1. Then At = n®®/c. Suppose instead that up < n%,  Set

t = n?® 1 and A = 1. Again, At = n®S/c. . Thus in either case it follows

from Bernstein's inequality that
= 2¢e
Pr(IZnhlit) < 2 exp(-n“7/3c) .
Consequently
lim Pr(|Z, |:>n€'%u +n%e" 1 for some heH ) =0
n nh! = h n )

Thus to verify Lemma 1 it is enough to show that for some € > O

1/2u+n2€-] -
2/8 i

€-
1im max 5
n u>0 u + 1/nu

where B8 1is from Condition 1. For 0 < e < 1/2(1+8), this result is easily

e -8/2(1+8) g

s - -1
shown by considering separately: 0 < u < n® 2%, n®772

<u<n
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The simplest way to prove Lemma 2 is by means of the ;echnique called

"Poissonization." It was used by Rosenblatt (1975) in a related context.

LEMMA 3. Let Nl be independent Poisson random variables with mean
A, such that 0 <X = A, <o Set N=JN, P, =2x/A and P = max,P,.
For each positive integer K there is a finite positive universal constant

Ck such that

(TN-NP - PR < ¢ (e ke

2
This Temma follows in a straightforward manner from properties of
cumulants summarized in Gnedenko and Kolmogorov (1954) or Kendall and Stuart

(1977). (Observe that E[(N->\)2k

] 1is a polynomial in )\ of degree k with
zero constant term. The next step is to prove the desired conclusion with
N replaced by A.)

Set T = sup p and Nn(Ihz) = nPn(Ihz):

LEMMA 4. For each positive integer k there is a universal constant

¢, such that E[(é(Nn(Ihz)'nP(Ihz))z' M) < epnf(1+ (nev)6).

kth

PROOF. Let My, denote the 2 moment of

7 = %(Nn(lhl)-nP(Ihl))z - n

and set Wy = 0. Let R(X) denote the Zkth moment of the random variable
obtained through replacing n in the definition of Z by a Poisson number

N having mean A. Then

R(A) = T Pr(N=n)u_ = ] AT
n n



According to Lemma 3 and the well known connection between multinomial and
independent Poisson random variables, R(\A) is a polynomial of degree 2k

in A and
2k o(3) .
0< } B‘j{éSD'XJ = R(}) f_ck(x+xk+x2k(rvh)k) for x>0 .
Jj=1 ’

Thus there is a finite positive universal constant Ck such that

2k 1 p(3) -
) -LR—%—QU- A < ci;(xﬂkﬂz"(-cvh)k) for X >0.
j=1 )

(For suppose otherwise and note that for each fixed ¢ > 0, if A > 0 and

RV () .3 k.. 2k K
i"fié'li'x >> ck(x+x +A (rvh) )
then

(3 . 2k (3 ;
J_R_J.)iQLL (en)d > _Z] R—j%@l (ex)d >0 ;
j=

Jj!

by a compactness argument, there would then be a nonzero polynomial in ¢

of degree 2k that equals zero at more than- 2k distinct points.)

Consequently,
2k (3) 2k | (j)g TR
- n!R 0 R 0 J " k, 2k k
My = jzl n=3)T51 S'jzl 31 n’ < ck(n+n +n (rvh) ) for n>0,

-

which yields the desired result.

To prove Lemma 2, observe that by Lemma 4 and Chebyshev's inequality,

2_1
lim max 24Py (Tpg) = Py )" -7l a

.S.
= 0 for € >0.
n h ne'](vﬁi-n'%)

Let r >0 be fixed. It is easily seen that for sufficiently small
e >0,

e-1,. %, -%
. +
1im max 2 ﬁY ]n )

n v —
V(V * nv)

=0.




The desired conclusion follows from these two observations.
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