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1. WHAT IS THE mth DERIVATIVE OF A COMPOSITE FUNCTION? By far 
the best known answer is 

Fa'a di Bruno's Formula. If g and f are functions with a sufficient number of deriva- 
tives, then 

dm 
g( f(t)) = 

dtm 

where the sum is over all different solutions in nonnegative integers bl, ... , bm of 
bi+2b2+ +mbm= m,andk:= b+ +bm. 

For example, when m = 3 this instructs us to look at all solutions in nonnegative 
integers of the equation b1 + 2b2 + 3b3 = 3. We can have b3 = 1, b1 = 0 = b2, in 
which case k = 1 and we get the term 

0!30! 1! g'(f(t)) 3)! = g' (f(t)) f"I(t). 

Otherwise we must have b3 = 0. Then we can have b2 = 1 = bl, in which case k = 2 
and we get the term 

_ 
! 1 O ( f (t))( !)(2 )= 3g" ( f (t)) f I(t) f 11(t). 

The only other solution is b1 = 3, b2 = 0 = b3, in which case k = 3 and we get the 
term 

3! g"f (f(t)) (f (t)) = g"' (f (t)) (f'(t))3 

3! 0!0! 9( 0 

Therefore Faa di Bruno's formula says (coffectly) that 

dt3 g (f (t)) = g' (f (t)) f"'(t) + 3g" (f (t)) f'(t) f"(t) + g"' (f f , (t))3 . (1.2) 

In spite of its appearance, (1.1) is rather simple when conceived of in the right way, 
as was recently pointed out in this MONTHLY by Harley Flanders [24]. A restatement 
in terms of set partitions can be proved easily in a few lines, as we shall see in Section 2, 
though it still requires a bit of work to pass from that form to the form in (1.1). 
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Once Faa di Bruno's formula was considered a real analysis result: it is in the Cours 
d'Analyse of Goursat [28] and of de la Vallee Poussin [66]. Riordan and Comtet [53], 
[12], [13] saw it as part of combinatorial analysis, a term that seems to be going out 
of fashion; the subject subsumed in algebraic combinatorics, the books of Riordan 
and Comtet largely superseded by Stanley's monumental [64] and [65], where Fa'a di 
Bruno's formula is mentioned [65, p. 65], but not stated. It can also be found in books 
on partitions [3], mathematical statistics [14], matrix theory [35], calculus of finite 
differences [37], computer science [38], symmetric functions [44], and miscellaneous 
mathematical techniques [46]. 

Faa di Bruno published his formula in [16] and [17], which both date from Decem- 
ber 1855. [16] is in Italian and [17] in French, but otherwise they are essentially the 
same-both are very short, containing little more than the statement of the result. The 
usual reference for his demonstration is the appendix of his best known book [20], 
which would not appear for another 20 years. The same proof (an induction that has 
left some commentators unsatisfied) is in the appendix of [19], which came out in 
1859. 

But there is much more to the story. The "little more" in [16] and [17] includes a 
determinantal version of Faa di Bruno's formula, which has received little attention. 
That several other mathematicians found different expressions for the mth derivative 
of g(f (t)) in the 19th century has been forgotten; these are all independent of Faa di 
Bruno's work and a few of them predate it. Most of all, Faa di Bruno was neither the 
first to state the formula that bears his name, nor the first to prove it. We elaborate on 
all this below. 

2. A COMBINATORIAL ARGUMENT. It is convenient to begin by discussing 
the Bell polynomials, which are associated with set partitions. To the partition {1} 
we associate the monomial xl; this is the only partition of the set {1}, and we define 
Bl, (xl) = xl. The set {1, 21 has the two partitions {1, 21 and {11, {21, the former with 
one block and the latter with two, and we associate to them the monomials x2 and xl, 
respectively. Then B2,1 (xl, x2) = x2 and B2,2(xl) = x. 

There are five partitions of the set { 1, 2, 31. Three of these have two blocks, namely 
{1, 21, {31 and {1, 31, {21 and {11, {2, 31; we associate the monomial x1x2 to each of 
these, and so B3,2(x1, x2) = 3x1x2. The other Bell polynomials of order three are 
B3,3(xl) = xl, corresponding to {11, {21, {31; and B3,1 (xl, X2, x3) = X3, corresponding 

1~~~~~~~~~ 
to I{I, 2,9 3}. In general , 

Bm,k(Xi 1X2 ... Xn-k+l) - k! (jl, ,ik) xk 

jl+- +Jk=m 

ji>l 

where Bo,o(xl) = 1; the sum is effectively over set partitions of {1, 2, ... , ml with 
block sizes ji, ..., Jk, with the factor 1/ k! correcting for the multiple counting inside 
the sum. Only m - k + 1 variables are necessary because no block can contain more 
than m - k + 1 elements. A further example is B4,2(xl, x2, X3) = 4xlx3 + 3x2, where 
there are 7 partitions of { 1, 2, 3, 41 into two blocks, 4 with one block of size three and 
one of size one, and 3 with two blocks of size two. 

We pause for a remark to be used later. If we set every xi = 1, we are simply count- 
ing the number of partitions of { 1, 2, . .. , ml into k blocks, which is the Stirling num- 
ber of the second kind. Following [39] (which anyone interested in Stirling numbers 
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should consult) I denote these by {m}; thus 

Bm,k(l, 1, ..., 1) = (2.1) 

This approach to the Bell polynomials seems to have originated in [26], which 
was published in a Chilean journal by Roberto Frucht and Gian-Carlo Rota in 1965. 
(Frucht's later paper [25] may be more accessible to some readers.) The name "Bell 
polynomials" was introduced by Riordan in [53], and it was he who first observed that 
they are ideally suited to the' description of Fa'a di Bruno's formula [52]. The polyno- 
mials that Bell actually considered in [5] were 

in 

Ym = Ym(Xl, X2, ...,xm) := EBm,k(Xl, ...,Xmk+l). 

k=O 

Thus, for example, Y3 (X1, X2, X3) = X3 + 3x1X2 + X1. Note that one can recover the 
Bm,k's from the Ym's by grouping the terms of Ym according to degree. 

Now associate set partitions to derivatives of composite functions in the same way. 
To g'(f (t)) f'(t) we associate t11. The partitions {1, 21 and {11, {21 correspond to 
g'(f (t)) f "(t) and g"(f (t))(f '(t))2, respectively. To each partition of {1, 2, . .. , m} 
with k blocks corresponds a term of dm g(f (t))/dtm with the factor g(k) (f (t)), where 
the block sizes determine its other factors (which are derivatives of f). Thus the par- 
titions {1, 21, {31 and {1, 31, {21 and {11, {2, 31, each with one block of size 1 and 
one of size 2, each correspond to g"(f (t)) f '(t) f "(t), and the other two partitions of 
{1, 2, 31, namely {1, 2, 3} itself and {11, {21, {31, are associated to g'(f (t)) f "'(t) and 
g"'(f(t))(f'(t))3 respectively; adding these five terms we get the right side of (1.2). 
The general result is 

Fa'a di Bruno's formula, set partition version. If g and f are functions with a suffi- 
cient number of derivatives, then 

d m g (f(t)) = x3g(k) (f (t)) (f/(t))bI (f//(t))b2 (f (m) (t)bti 

where the sum is over all partitions of {1, 2, ... , m}, and, for each partition, k is its 
number of blocks and bi is the number of blocks with exactly i elements. 

We may prove this by induction on m. Every partition of {1, 2, .. ., m + 1} can 
be obtained in a unique way by adjoining m + 1 to a partition of {1, 2, .. ., ml. If 
we add {m + 1} as a new singleton block, then we increase the number of blocks of 
size 1 by one, and the total number of blocks by one. This corresponds to applying 
d/dt to g(k)(f (t)) to get g(k+l)(f (t)) f'(t). On the other hand, if we add m + 1 to 
an existing block of size i (say), then the number of such blocks decreases by one, 
the number of blocks of size i + 1 increases by one, and the total number of blocks 
remains the same. If we started with bi blocks of size i, then we may add m + 1 to any 
of them to produce this effect. This corresponds to applying d/dt to (f (i) (t))bi to get 
bi (f (i) (t))bi-lf (i+l) (t); hence the result. An immediate corollary is 

Fa'a di Bruno's formula, Bell polynomial version (Riordan's formula). If g and f 
are functions with a sufficient number of derivatives, then 
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dm m 

dtm g(f(t)) = Yg (k) (f(t)) Bm,k (f'(t), f"(t), f(in-k+l)(t)) (2.2) 
k=O 

As such, this dates back to [52], but Cesaro gave a similar statement in terms of 
his calcul isobarique [10], so one might quibble with the name "Riordan's formula". 
(Fa'a di Bruno used the same word isobariche, which was suggested to him by Cayley, 
in describing his eponymous formula in [18], though if Ces'aro knew this, he did not 
say so.) The symmetrized form of Faa di Bruno's formula implied by (2.2) dates back 
at least to Hess in 1872 [31]. The classical Faa di Bruno formula (1.1) differs only in 
combining like terms. The number of partitions of {1, 2, ... , m} into b1 1-blocks, b2 
2-blocks, etc. would be 

I1.. 1 ,2,. . . ,2, 3 ... ,3 ,...J 

bI l's b2 2's b3 3's 

except that this makes artificial distinctions among the i-blocks for each i. The actual 
number of such partitions is 

1, . . .,9 1, 2, . . .,9 2, 3,9 ... ., 3, . ... bI! b2! ... bm! 

bI l's b2 2's b3 3's 

and (1.1) follows. 
I think that this proof of Faa di Bruno's formula (with or without the material on 

Bell polynomials) would fit very well in an undergraduate course in combinatorics. It 
is surprising that such a simple argument is not better known. Besides [26] and [25], 
one can find another form of it in [11], and a q-version in [36]. Zeilberger suggested 
a (superficially) different combinatorial approach in [69]. Most induction proofs, such 
as the one in [19] and [20], are described in terms of number-theoretic (rather than 
set-theoretic) partitions, which makes the induction less transparent. 

We may also use set partitions to prove Fa'a di Bruno's determinantal form of the 
result. 

Lemma. If m > 1, then 

(m-1)X (m-1)X2 (m-1)X3 ... (m-2)Xm-1 (m-)Xrn 

-1 (m-2 )X (m-2)X2 ... (m-2)Xm-2 (m-2)Xm_1 

0 -1 m-3) X ... (m-3) Xm-3 (;n-)3X l2 
Ym (XI X2, ... ., Xm) = 

n4in3XI 

0 0 0 ... (0)X1 (1)X2 

O 0 0 ... - 1 (?)xI 

All entries on the main subdiagonal are -1, and all entries below it are 0. For example, 
Y1(xl) = xl, and 
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Y2(xI, X2) = X1 X2 = 2 + X2. 

As before, the term x42 corresponds to the partition {1}, {21, and the term x2 to the 
partition f 1, 21. From this point of view, it is interesting to expand these deter-minants 
across the top row: 

xi 2x2 x3 
Y3 (X1, X2, x3) = -1 XI X2 

0 -1 X1 

4 xI X2 -2x2 
-1 X2 

+X3 
-1 XI 

I~ -1 XI0 XI 0 -1 

= x I(x+ + X2) 2X2(X1) + x3(1). 

While we could simplify this further, in this form we can see that the top row represents 
the blocks that contain the largest element. The term xl (x42 + x2) represents all the 
partitions of {1, 2, 31 containing {31 as a singleton block; specifically, x3 corresponds 
to {1}, {21, t31 and x1x2 to {1, 21, {31. The term 2x2(xI) corresponds to the partitions 
in which 3 is in a block of size two, namely {1, 31, {21 and {11, {2, 31; and the term 
x3(1) corresponds to the partition {1, 2, 31. If we treat similarly the determinant for 
Y4(xI, x2, X3, X4), we reach 

Y4(xI, 
x2, X3, X4) = 

xI(x 
3 + 3x1X2 + x3) + 3X2(X12 + X2) + 3X3(X1) + x4(1). 

The term x1 (x 3 + 3x1X2 + X3) corresponds to the five partitions of { 1, 2, 3, 41 contain- 
ing {41 as a singleton block, the term 3x2(x 2 + x2) to the six partitions where 4 is in a 
block of size two, the term 3X3 (X1) to the three partitions where 4 is in a block of size 
three, and the term x4(1) to the partition {1, 2, 3, 41. 

In general, if we expand the determinant across the top row we will get a sum 

Lkm= (I-)Xk Cnu,k, where Cm,k is the cofactor of (77-)Xk; thus, for example, c4,2 = 

xi + x2. Note that (In-1 ) is the number of ways we can choose the k - 1 elements 
that are in the same block as the largest element m. It follows that Cm,k represents the 
partitions of the remaining m - k elements. 

We use this combinatorial interpretation to prove the lemma by induction on m. We 
have already verified it up to m = 4. Assuming it holds for m, we have to show that 

Ym+I(Xl, X2, ... , Xm+I) 

-1 (m0)X2 ('I )X2 ... ( izx-2)n (m-)xn2 

o -1 (n I)X2 ... (m2)X,z-l (-I)xnl- 

0 0 0 .. ()X (l)x2 
0 0 0 ... -1)X 

M OU OF .A - I (FM )x 



Expanding down the first column, we get 

(1)X2 (M)X3 ... (m-i)Xm (r)Xm+ 

-1 (m-2)X (.)m-2) (m-2)x 

o0 -1 . 2 )Xm-3 (m-l)Xm-2 
Xi Ym(Xi, *XXm) + 

0 0 ... (0)X1 (1)X2 

O 0 .. -1 (0)xi 

By induction, the first term represents the partitions of { 1, 2, ... , m + 11 containing 
{m + 11 as a singleton block. When we expand the second term across the top row, we 
get 

m 

XlYm(xi,. .,xm)+E (k)Xk+1 Cm,k, (2.3) 
k=1 

with the same cofactors Cm,k as before. For each k between 1 and m, the term 
(M)Xk+l Cm,k represents all the partitions of {1, 2, ... , m + 11 where m + 1 is in a 

block with k other elements, since there are (m) ways to choose these elements, and, 
by induction, Cm,k represents all the ways to partition the remaining m - k elements. 
Therefore (2.3) represents all the partitions of {1, 2, . .. , m + 11, and hence it must be 
equal to Ym?+ (x1, . .. , xm+i ), which proves the lemma. Now we are ready for 

Fa'a di Bruno's determinant formula. If g and f are functions with a sufficient num- 
ber of derivatives, and m > 1, then 

dm 

dtm g (f (t)) 

m1 (m-1) a 
- 

M/(-1) f8g 2 U( 
1 

(m-1)f ()g 

-1 (m02) f g (m2 )f //g ... (mn2) f(m-2)g (rm-2)f (m-l)g 

0 -1 (mo )f/g ... (m_4) f (m -3)g (m-3) f (m-2)g 

O 0 0 ... ()f'g (l)f g g 

0 0 0 ... -1 (?)f'g 

where f(i) denotes f ()(t) and gk is to be interpreted as g(k)(f (t)). 

We need only replace every xi in the lemma by f (i)g to reduce this determinant 
to Riordan's formula (2.2), in view of the remark that the Bm,k'S may be recovered 
from the Ym's. An equivalent formula was proposed by V. F. Ivanoff in 1958 in this 
MONTHLY as Advanced Problem #4782. Several years went by before the MONTHLY 
published a proof (different from ours, and apparently the only one they received) by 
Frank Schmittroth [61]. The editors missed a chance to publicize [43], a nice paper on 
statistical applications of Faa di Bruno's formula that appeared in this MONTHLY three 
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years before the problem was posed, and they also failed to mention Fa'a di Bruno. (The 
current editors are, of course, much more enlightened.) Ivanoff's formula is also stated 
in [46], and as a problem in [12] and [13]. The determinant in [16] and [17] differs 
in two ways from the one given here: it is stated for n + 1, rather than for m; and its 
first column is our last column, with a compensating factor of (- I)n in the result. Its 
columns are arranged as above in all the other occurrences I know of. I have not seen 
another evaluation-Muir's only comment [51] is that "an opportunity was here lost 
by Bruno of noting that a recurrent with the elements in its zero-bordered diagonal 
all negative has all its terms positive"-but from the first few pages of [19] or [20] 
it seems that Faa di Bruno probably deduced it from two formulas in the theory of 
symmetric functions. 

3. TAYLOR'S THEOREM AND RIVAL FORMULAE. We may rephrase our ini- 
tial question: assuming that f (t) and g(u) are sufficiently nice functions, how should 
we expand g(f (t + h)) in powers of h? For Taylor's theorem tells us that 

00 dmi hill 
g (f(t + h)) = , d'g (f(t)) !' (3.1) 

and, as Ubbo H. Meyer pointed out in 1847 [48], it can also be made to say that 

g0(k) (f(t)) 
g (f (t + h)) = L, k( (f (t + h) -f (t))k (3.2) 

k= 

by taking u = f(t) and v = f(t + h) - f(t) in 

g09(k) (U)k 
g(u + v) = L ( v 

k=O 

Comparing (3.2) and (3.1) we have 

Meyer's observation. - - g(f (t)) equals the coefficient of h'11 in (3.2). 

While this idea was not completely new with Meyer, it was never before stated 
in such a versatile form: several variants of Faa di Bruno's formula follow from dif- 
ferent methods of extracting the coefficient of hm. In [1], a few years after [48], the 
pseudonymous T. A. (of whom more later) noted that, if 

hf (t) = 
f(t +h) -f (t) 

then the coefficient of hm in (f (t + h) - f(t))k is the same as that of hln-k in 
(Ah f (t))k. After taking m - k derivatives with respect to h and setting h = 0, a 
little rearrangement gives 

T. A.'s formula. If g and f are functions with a sufficient number of derivatives, then 

dtm g(f (t) = E? (k)g (f (t)) dh (/\h f(t))k| 
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Meyer's approach was more straightforward: just take m derivatives of (3.2) with 
respect to h and set h = 0. After cancelling 1/rm! on each side, and observing that the 
terms with k > m must vanish, this gives 

Meyer's formula. If g and f are functions with a sufficient number of derivatives, 
then 

idm ~~m g (k) (f (t)) dm 
dtm g (f () (f (t + h) - f (t)) 

11 ~~k=O k! dh= 

This result appears in [37] under the name "Schlomilch's formula", with reference 
to [60], but Schl6milch attributes it to [48] there and in [59]. Meyer proceeded to 
expand (f (t + h) -f (t))k by the binomial theorem: 

(f (t + h) -f (t))k = k G) (_f (t))k-j (f (t + h))1. 

Now we have only to take m derivatives of (f (t + h))' with respect to h and then set 
h = 0. Equivalently, by the chain rule, we may take m derivatives of (f (t + h))i with 
respect to t + h and then set h = 0; but this amounts to taking m derivatives of (f (t))' 
with respect to t, and thus Meyer derived 

Hoppe's formula. If g and f are functions with a sufficient number of derivatives, 
then 

dm ~~m g(k) (f(t)) 

dtm g (f (t)) = L k!( Am,k (f (t)), 

where 

Am,k (f(t)) = k ()-f (t))k-j dm (f(t)). (33) 

This also has an easy proof, which I have not seen in the literature, using the recurrence 

dt dyAm, k(f (t)) = Am?l,k(f (t)) -f'(t)Am,k-l (f (t)), 

where Am,O(f(t)) = 0 unless m = 0, when it equals 1. The theorem was published at 

least three times by Reinhold Hoppe. It is a main result of his monograph [32] of 1845, 
a summary of which appeared in Crelle's Journal the following year [33]. I have not 
seen [32], but neither [33] nor the much later [34] has a proof. If [32] has one, we may 
infer from [59] and [60] that it is not Meyer's. Meyer seems to have been unaware of 
Hoppe's work; his only reference is to [58], one of two earlier papers of Schlomilch 
that contains the special cases f (t) = et and f (t) = tX of the interior function. (The 
similar [57] appeared in Crelle's Journal in the same year as [33].) While Schl6milch 
does not mention Hoppe's formula in these papers, he did learn of Hoppe's work later, 
and he gave a different derivation. It is evident that 

dtm (f (t) = g )(ft) Am i (f (t)) (34) 
dtm gSCA- O (3) [ 

i=O 



for some quantities Am,i (f (t)) that depend only on f (t), not on g(u). To find them, 
take g(u) = 1, u, u2, ..., um in turn. Since d' uJ/du' = i! (j)uJ-', substituting these 
choices of g(u) into (3.4) gives 

dtm (i ) (f (t))i Am,i (f (t)) for each j, O < j < m. (3.5) 
i=O 

The rest of the argument can be described succinctly: apply the inverse relation 

bj = E (- 1)( a)i ak = 
Y 

)(_l)i bj 

to (3.5). Schl6milch did not cast it in these terms, but presumably one would not 
find this proof without some inkling of the general principle. Multiply (3.5) by 

(jk)( f(t))-j for each j, 0 < j < k, and sum on j: 

(f (t) dtm (f (t))' 

j==O 

k k_ 
= , (j (-f (t)) i , ii (f (t))i A Am (f (t)) 

=E ( - f (_() -i Am, i (f (t)) E (j .(- 1)-. 

The inner sum is (1- _)k-i, so it equals 1 if i = k and is 0 otherwise. Then we have 

, ( j _ (-f (t))j i (f (t))j = (_f (t))-k Am,k (f (t)) 
j=O dtm 

which is (3.3). Schlomilch gave this argument in [59], and again later in [60]. An 
interesting variation was given by Mossa [49]. First note the 

Lemma. If fl, f2, ... fk are functions with a sufficient number of derivatives, then 

d {fi(t) f2(t) ... fk(t)} = j m, jk f ) i 

Taking each fi (t) equal to f (t) here gives 

dtm (f()k= E (j 
f 

)(hl)(t) . .. f ik) (t), (3.6) dtm 11+ ?+Jk=m i ,Jik 

and comparing (3.6) with (3.5) we get 

3 
()(f (t))k Am, i (f (t)) = fk 

7 
)(il)k(t) ... 

f(ik)(t). (3.7) 

Mossa then asked for the coefficient of (f(t))k-i on the right side of (3.7). To get 
(f (t))k-i there we need exactly k -i of the jh'S to be zero. There are (ik) different 
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ways to choose the positive jh'S, so the desired coefficient is 

ki E f m O jl(t) . .. f Ui) (t), 

j l > +I n 

1,/>1 

and therefore (3.7) implies that 

A (f(t= z ( m )f)(t) (t) 

l~~ ~i Ji**ji=} 
lb >1 

if m > 1; this, together with (3.4), is Riordan's formula (2.2). 

Schl6milch's argument also appears, without any reference, in Bertrand's Traite 
de Calcul diffrrentiel [6] of 1864, which seems to be the first appearance of Hoppe's 
formula in the French literature. (Although Meyer's paper [48] is in French, it appeared 
in Grunert's Archiv der Mathematik und Physik. Coincidentally, 25 years later Hoppe 
became editor of the Archiv when Grunert died in 1872, and held the job until his own 
passing in 1900. Thus he had no lack of opportunities to publish any proof that he 
might have possessed.) Bertrand pointed out that we may rewrite (3.3) as 

Am,k (f (t)) = (f (t))k d (f t ) (3.8) 
dt"2 a / 

where a is to be considered a constant until the binomial has been expanded and the 
differentiations performed, and only then set equal to f (t). Fais also made this ob- 
servation [21], though he may not have done so independently. Hoppe's formula is 
discussed on pp. 138-141 of [6], and Faa di Bruno's formula (without a reference) 
on pp. 308-309. Fais gives a reference to [6] for the latter, but not the former, so he 
might have missed (3.8), but it could also be that he forgot he had seen it there. Her- 
mite included Hoppe's formula (but not Fa'a di Bruno's) in his Cours d'Analyse [30], 
attributing it to [6] while giving Meyer's proof. 

Hoppe's formula could be considered an unsatisfactory solution to the higher chain 
rule problem, in that it merely reduces to the case where the exterior function g is 
a power function. A more interesting remark is that no powers of f itself (nor any 
minus signs) can actually appear in the final answer. This means that all the terms 
in (3.3) with j < k must ultimately cancel-the only contributions that survive come 
from j = k. Some constituents of the j = k term still have a factor f (t), so they too 
must vanish; thus Hoppe's formula simplifies to 

Scott's formula. If g and f are functions with a sufficient number of derivatives, then 

dill gn (k) (f (0) r din (f (t))\kl 
dtm g(f (t)) = k! | dt"' E f (t)=O 

This theorem (more or less) is in a little-known paper from 1861 by George 
Scott [63], which is, I believe, the first work to contain both Faa di Bruno's and 
Hoppe's formulas, and the first appearance of either in English. Both are unrefer- 
enced, but it seems reasonable to suppose that Scott was at least aware of [17], which 
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was in the Quarterly Journal of Pure and Applied Mathematics just four years be- 
fore [63] appeared there. I know two other sources in English for Hoppe's formula: 
Schwatt's book [62], with no reference, where one of the proofs is a less elegant 
version of Schl6milch's; and [23] (whose title deserves some sort of award), with a 
reference to [6]. 

If we set f (t) = 0 in (3.6) (so that the only terms that survive are those with each 
ji > 1) and substitute in Scott's formula, Riordan's formula falls out. This remark is 
essentially due to Marchand, in his survey paper [45], the only other reference I know 
for Scott's formula (which one could also prove by using Marchand's idea in the other 
direction). Fais proved Faa di Bruno's formula in a similar way using (3.4), (3.8), 
and (3.6) [21]. One may also derive Faa di Bruno's formula directly from (3.2): 

hJ+ hJk 

(f(t ? h) f f(t))k = f(l(> (f'(Z) f"(tk) (t) kl(t 

jJ=1 ii~! I k 1i 
00 hm / Jk= fjk!t/..f j) t 

L?? ( Y?? (1k 

mk 
jl+"+jk=m 

g(k! t m Bm, k (f '(t), f "(t), (m-k+l)(t)) 

m=k=k 

and so (3.2) becomes 

g(f (t ? h)) = k= mk!Bm,k (f'(t), f() f. f(m-k+l)(t)) 

?? hm m 

E 3 E g(k) (f (t)) Bm,k (f (t), f"(t), f (m-k+l)(t)) 

m=O * k=O 

Here is an expansion of g(f (t + h)) in powers of h, and Riordan's formula follows 
after comparison with (3.1). Bertrand obtained the classical Fa'a di Bruno formula 
(with a few misprints) by this method in [6]. His argument appears in the German 
literature much later, in a paper by Franz Meyer [47], who seems to have learned it 
from Dedekind. The proof in [63] is also along these lines, using the symbolic form 

h d 
/ (y + h) = e ay / (y) of Taylor's theorem. The main idea is older yet, as we see in the 
next section. 

4. THE SECRET HISTORY OF FAA DI BRUNO'S FORMULA. Schlomilch's 
proof of Hoppe's formula exploits the fact that, since one can see a priori that the 
factor multiplying g(k) (f (t)) depends only on f, not on g, one may specialize g to 
find it. The best-known proof of Faa di Bruno's formula also uses this idea, with an 
exponential function for g. Ironically, it dates back to a paper that is almost entirely 
unknown, namely [1], which we met in the preceding section. Five years before Fa'a 
di Bruno's papers, T. A. expanded eP(x+h) in powers of h. On one hand, by Taylor's 
theorem, 

eP 2(x+h) = X n jd epO(x)j h (4.1) 
n=O n N 



On the other hand, if we expand q0(x + h) then we get 

P~o(x+h) = eP(x)e p'(x)heP(X) 2! ... 

Developing all factors except the first in infinite series and rearranging, we have 

E0 n , b !n (X n!) eP2(+) h ~ LpeP~L2(x) EI (q()11 (p)(4.2) 

where the innermost sum is over all different collections of nonnegative integers 
bl, ..., bn satisfying b ? + b2 + ?+ bn= k and b? + 2b2 + + nbn= n. T. A. 
obtained what we now call Faa di Bruno's formula by comparing (4.1) with (4.2). 

T. A. was described in [1] and its sequel [2] as "Ancien eleve [alumnus] de l'Ecole 
Polytechnique". It appears that he was an artillery captain named J. F. C. Tiburce 
Abadie. He made several contributions to the Nouvelles Annales de Mathematiques 
around 1850, of which (in my opinion) [1] and [2] are the most notable. He seems to 
have stopped doing mathematics soon afterwards, as his last work for the Nouvelles 
Annales came out in 1855. Apart from [2], I know of only three references to [1]. Fais 
and Mossa mentioned it in the same volume of Battaglini's Giornale in 1875 [21], 
[49], and Marchand discussed [1] and [2] in [45] a decade later. [2] was one of several 
papers appended by Combescure to [8], his French translation of Brioschi's book on 
determinants, and Muir also comments on it in [51]. It begins with T. A.'s formula of 
the preceding section, and never mentions Fa'a di Bruno's formula. 

There are several umbral calculus proofs in the same spirit as T. A.'s proof. The 
first, by Riordan [53], predates the rigorization of umbral techniques by Rota and sev- 
eral collaborators. Subsequent papers by Roman [54] and Chen [11] eventually put 
Riordan's argument on a firm foundation. 

The first doctoral thesis in mathematics at the Friedrich-Wilhelms-Universitat in 
Berlin (see [7]) was [55], completed by Heinrich Ferdinand Scherk in 1823. In sec- 
tion 5 of his dissertation, Scherk wrote that, if z is a function of y and y a function 

k 
of x, then (in his notation) the coefficients A in the expansion 

dnz n dnz n-I dn-Iz n-2 dn-2z k dkz 1 dz 
=A ? + A ? + A d n 2 + +A ??A + +A (4.3) 

dXn d n dynI d - dy k dy 

are 

1 2 3 n-k+? 
_dy _ /2 d3\a dll-k?ly el 

k (dx ) (dx2 ) (dx3 dxl-k+l) Fn 
A=v 1 2 3n-k+ 1 I i2 . FE 3 n-k+ l' 

(Hl ) (H 2) (H 3)a [HJ(n-k+1)] 
a laLa La La 

(4.4) 

where the sum is over all collections of nonnegative integers a, a, a .. ., a satis- 
fying the pair of equations 

1 2 3 1)n-k+l 
a +2a +3 a +... + (n-k?1) a =n, 

1 2 3 n-k+1 
a? + ? + a + + a =k. 

Scherk's formulation incorporates the fact that there can be at most n - k + 1 positive 
a 's, as in the definition of the Bell polynomials, a reduction not made by most later 
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writers. He pointed out that Crelle had recently considered the same problem in [15]. 
Crelle gave a number of special cases of Faa di Bruno's formula, up to n = 6; there is 
also an unsuccessful attempt to write down the general case. In some sense he knew 
what the formula should be, but could not see how to describe it in general. This may 
explain his interest in Hoppe's work many years later. 

Scherk's evident motivation is rather surprising. His thesis is primarily concerned 
with Stirling numbers. After writing down an example with n = 5 and k = 3, he ob- 
served that if we take y = ex and z = e" = y' in (4.3) and (4.4), then we can derive 

a= ,: } (-r)nk (a) k,, (4.5) 

which he attributed to Kramp's book [40]; this expresses the power functions an in 
terms of the rising factorials (a)k,r := a(a + r)(a + 2r) ... (a + (k - 1)r), where 

k 
(a)o,r := 1. To be more precise, with these choices of y and z, the sum for A may 
be evaluated by (2.1), and this results in the case r = -1 of (4.5). The general case 
then follows by replacing a by -a/r. One might instead prove (4.5) by induction, 
using the recurrence 

{ }k = {k-1} I k} 

Several papers on Faa di Bruno's formula refer to p. 325 of the first volume of 
Lacroix's Traite du Calcul diffJerentiel et du Calcul integral, 2nd edition [41], which 
dates back to 1810. Lacroix wrote there that, if y is a function of x, then 

do5(y) dx d2q5(y) dX 2 d 3q5(y) dX 3 
q5(y) ? dx 1 dxx2 1.2 dX 3 12 + (4.6) 

dydx d2ydx2 d3y dx3 e 
dx 1 dx2 1.2 dx3 1.2.3 

Lacroix concluded that d no (y)/1.2 ... n dXn must equal the coefficient of dxn on the 
right side (a precursor of Meyer's observation), but volume 1 leaves it at that. Vol- 
ume 3 came out nine years later, and by then Lacroix had seen how to complete the 
calculation. Assuming again that y is a function of x, he wrote 

dnq5(y) _dnq5(y) d nq5(y d"n2 0(y) nT2~ . 
= 4T n d _ Tln1 + n(n-1) T .............. 

dXn dyn ~ f dyn I dy n-2 2 

......... ...+ n(n -1)(n -2) ....... 2 0 )Tnl-X 

where Tsr is the coefficient of dxs in the expansion of 

dy d2y dx d3y dx2 
? ?- ?e 

..31rtc. dx dx2 1.2 dx3 1.2.3 

which, he further wrote (with reference to section 24 of the Introduction in volume 1), 
is 

1.2.3.... r (dx) (dx2) (dx3) etc. 

1.2 ... a. 1.2 ... b. 1.2 ... c x etc. (l)a(l.2)b(1.2.3)cetc. 
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where a, b, c, ... satisfy 

a + b + c + etc. = r, 

b + 2c + etc. = s. 

This is on p. 629 of volume 3 of [41], in a long concluding section entitled Correc- 
tions et Additions. It is not in the first edition of the Traite', whose three volumes were 
published in 1797, 1798, and 1800, and (4.6) is not there either. 

[41] is a snapshot (or perhaps a mural) of 18th century analysis, especially valuable 
now for the extensive bibliography in most sections. Although he was the outstanding 
textbook author of his time, it has been written that Lacroix made no original contribu- 
tion to mathematics (on this point see [29, p. 113]), so one naturally wonders whether 
he had a source for this material. He does not give a reference for Fa'a di Bruno's for- 
mula. The section in which (4.6) appears [41, vol. 1, pp. 315-326] lists three sources, 
one of which is Du Calcul des De'rivations, published in 1800 by L. F. A. Arbogast [4]. 
Much of the section is devoted to Arbogast's work. While (4.6) comes near the end, 
and is not specifically attributed to Arbogast, on p. 3 of [4] one finds 

D 
D.a D2.a 2 D./a 

D 
x2?a a + x + x 2 +etc.J =a+ 1 1+ 2 + etc. 1 1.2 12 

Arbogast noted that this equation could be used to work out the higher derivatives 
D .na, giving examples when n = 2 and n = 3. 

The first six cases of Faa di Bruno's formula are on pp. 310-311 of [4]. At the 
bottom of p. 312 Arbogast gives a prose rule for writing down the general case, and on 
p. 313 he illustrates his rule by writing down the case n = 6 again, twice, followed by 
n = 7. Although he never gives a general formula, nor a proof of his rule, on pp. 43- 
44 of [4] there is a formula for the coefficient of xm in (? + yx + 8x2 + EX3 + etc.)n. 
Thus Arbogast had most of the ingredients of Lacroix's argument at hand, but he seems 
never to have written down Faa di Bruno's formula as such. 

5. CONCLUSION. One occasionally sees the variant spelling "Faa de Bruno", 
which Faa di Bruno himself always used when writing in French. In his Italian papers 
he seems to be invariably "Cav. F. Fa'a di Bruno". Francesco is his first name, and 
"Cav." signifies "Cavaliere"; he was in the army for a number of years before deciding 
to study mathematics. In French he is most often "M. Faa de Bruno", but in [19] he is 
"Chevalier Francois Fa'a de Bruno", and in [20] "Chev. F. Fa'a de Bruno". 

Another bit of trivia: although Scherk published Faa di Bruno's formula in Berlin 
in 1823, his thesis is in Latin, and the formula was apparently never printed in German 
before 1871. Hoppe restated his formula in 1870 [34], in volume 4 of the Mathematis- 
che Annalen, in response to the publication by G6tting in volume 3 of a complementary 
result: the special case of Faa di Bruno's formula where g (u) = uk [27]. Volume 4 also 
has Most's paper [50], which gives the general case. Scherk was still alive then, but, in 
his seventies and not mathematically active, he did not follow Hoppe's example. 

Scherk and Crelle were both familiar with Lacroix's book. While Scherk did not 
mention it in his thesis [55], in 1825 he published a short book [56] which has several 
references to [41]. Some of the material in [55] is repeated in [56], but Faa di Bruno's 
formula is not; thus Scherk missed an opportunity to publicize it, just as T. A. did 
27 years later. There are several plausible reasons for this omission: Scherk may have 
known that the formula was in [41] (I think he probably did not know this in 1823, but 
he may have known it by 1825); he may have been bothered by a lack of proof; or he 
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may simply have thought it wasn't that interesting. The first reason could also apply to 
T. A. 

Although [15] contains several references to [41], Crelle must not have known that 
Faa di Bruno's formula was there, or else he would have been able to write down the 
general case himself. How could he, and others, have missed it? Some contributing 
factors may be: 

i. It was only in the second edition of the Traite, not the first. 

ii. It was not in the second edition where it logically belonged, in the middle of the 
first volume, but rather near the end of the last volume, in a supplement. 

iii. It was not the Traite but an abridgement, the Traite Elementaire, which was 
more commonly used as a textbook. 

iv. The translations of the Traite into German and into English were also abridged. 

v. At the time that the last volume of [41] came out, Cauchy was reforming the 
calculus sequence at the Ecole Polytechnique. The impact of this was profound; 
it is still felt today in calculus and analysis, and over time it diminished the 
influence of the Traite considerably. 

We could add to this list the fact that Bertrand's Traite was in many ways a new 
and improved version of Lacroix's, so whatever audience [41] still had by 1864 was 
further reduced by [6]. Bertrand may be the most likely of our authors to have known 
that Faa di Bruno's formula was in [41]. I also think he is as likely to have read [1L 
and [2] as [16] or [17]. 

Faa di Bruno's other mathematical accomplishments, of which an excellent account 
may be found in [9], have caused him to receive more credit for the higher chain rule 
than he deserves. His book [20] on binary forms was well known throughout Europe- 
written in French, published in Italy, translated into German, and on a subject of great 
interest to Cayley and Sylvester, leading British mathematicians of the time. The name 
"Fa'a di Bruno's formula" came into use only after the appearance of [20]. As far as I 
know, the only references before that to Faa di Bruno's work in this area are to [16] by 
Italians (Faa di Bruno himself and [22], [21], [49]). 

I cannot explain how Fa'a di Bruno, who was living in Paris when he wrote [16], 
[17], and [18], could have overlooked [1], which appeared in a prominent French jour- 
nal only five years earlier. I find this one of the most puzzling aspects of the whole 
subject, especially since the sequel [2] was in the same journal only three years be- 
fore Faa di Bruno wrote [16] and [17]. One wonders about his decision to publish the 
French version [17] in a British journal, which made it less likely that anyone familiar 
with [1] or [41] would see it. But there is a very good reason why someone whose pri- 
mary interest was invariant theory should have sent a paper to the Quarterly Journal 
of Pure and Applied Mathematics at that time: Sylvester had just become its editor. 

One also wonders how two Italians knew of [1] when it seems to have been virtually 
unknown in France. Perhaps Fais and Mossa (who was evidently Fais' student) got this 
reference from Faa di Bruno-who else in Italy in 1875 was more likely to know about 
T. A.'s work? On the other hand, if we are to judge only from their publications, Fais 
seems more familiar with the literature in this area than Faa di Bruno; he also cites [27] 
and [50]. One might instead wonder whether Fa'a di Bruno had read [21] or [49] by the 
time he completed [20]. 

It is easy to see why Faa di Bruno's formula should have won out over Hoppe's 
formula and the other candidates, and one might better ask why Hoppe's formula was 
seen as a serious rival in the 1860s and 1870s. I believe that the Bell polynomial (or 
equivalently the set partition) version is really the fundamental form of the result. 
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While the demise of Hoppe's formula is unlamented, I also think that Scott's formula 
deserves to be better known. 

Finally, one is struck by the obscurity of many of the names in our story. (An easy if 
not altogether satisfying explanation: this is made possible by the lack of depth of the 
subject.) It would be nice to have more biographical information about some of them, 
T. A. especially. I know of two good sources for Hoppe: the obituary notice [42], 
and Biermann's history [7] of the mathematics department at Berlin University. The 
latter also has some information about Scherk. Background on Lacroix may be found 
in [29], an unsurpassed reference for early 19th century French mathematics. Fa'a di 
Bruno has been the subject of several Italian biographies focusing on the religious 
aspects of his life. He was ordained a Roman Catholic priest on October 22, 1876, was 
a pioneer in charitable works, and was declared a Saint on September 25, 1988. In his 
last two papers for Sylvester's American Journal of Mathematics he was "the Rev. Fa'a 
de Bruno" and "l'Abbe Fa'a de Bruno". One might only wish that this admirable man 
had either read more or been a little more saintly in his citations. 

6. ACKNOWLEDGEMENTS AND SOURCES. I seldom thought about Faa di 
Bruno's formula after [36] was published until I saw a preliminary version of [68], 
which rekindled my interest. I thank Winston Yang for writing it, and George Andrews 
for sending it to me. 

I should perhaps say something further about references. I might never have begun 
this project had I not come across [45] and the reference there to T. A.'s work; thus I 
owe much to [13] and the outstanding bibliography therein. Marchand seems to have 
read nearly everything ever published on this subject in France, but not much else. 
Unfortunately he failed to spot Faa di Bruno's formula in [41]. He also missed [17] 
and [48], which were both written in French but published elsewhere. 

Although I was misled by it once or twice, a short history of the higher chain 
rule that was very helpful is in Lukacs' paper [43]. Much of Lukacs' history was 
evidently drawn from the article by Voss in the Encyklopddie der Mathematischen 
Wissenschaften [67]. Voss is an excellent source on the German contributions to the 
subject from 1845 on; otherwise he mentions only [16] and [41], though he too missed 
Faa di Bruno's formula in Lacroix's third volume. To paraphrase an old joke, Voss is 
Marchand with some changes of sign. 

REFERENCES 

1. T. A. [J. F. C. Tiburce Abadie], Sur la diff6rentiation des fonctions de fonctions, Nouvelles Annales de 
MathMmatiques 9 (1850) 119-125. 

2. A. [J. F. C. Tiburce Abadie], Sur la differentiation des fonctions de fonctions. S6ries de Burmann, de 
Lagrange, de Wronski, Nouvelles Annales de MathMmatiques 11 (1852) 376-383. 

3. George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, vol. 2, 
Addison-Wesley Publishing Company, Reading, Massachusetts, 1976; Cambridge University Press, 
Cambridge, 1984, Cambridge Mathematical Library, 1998. 

4. L. F. A. Arbogast, Du Calcul des De'rivations, Levrault, Strasbourg, 1800. 
5. Eric Temple Bell, Exponential polynomials, Ann. of Math. (2) 35 (1934) 258-277. 
6. Joseph Bertrand, Traite de Calcul diffrrentiel et de Calcul integral, vol. 1, Gauthier-Villars, Paris, 1864. 
7. Kurt-R. Biermann, Die Mathematik und ihre Dozenten an der Berliner Universitdt 1810-1933, 

Akademie-Verlag, Berlin, 1988. 
8. Francesco Brioschi, Theorie des de'terminants et leurs principales applications; French translation by 

Edouard Combescure, Mallet-Bachelier, Paris, 1856. 
9. Giuseppina Casadio and Guido Zappa, I contributi matematici di Francesco Faa di Bruno nel periodo 

1873-1881, con particolare riguardo alla teoria degli invarianti, Rend. Circ. Mat. Palermo (2) Suppl. 36 

(1994) 47-70. 
10. Ernesto Cesaro, D6rivees des fonctions de fonctions, Nouvelles Annales de Math6matiques, 3rd series 4 

(1885) 41-55; Opere Scelte, vol. 1, Edizioni Cremorese, Rome, 1964, pp. 416-429. 

232 (?) THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 109 



11. William Y C. Chen, Context-free grammars, differential operators and formal power series, Conference 
on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991), Theoret. Comput. Sci. 117 
(1993) 113-129. 

12. Louis Comtet, Analyse Combinatoire, Presses Universitaires de France, Paris, 1970. 
13. Louis Comtet, Advanced Combinatorics, Revised and Enlarged Edition, D. Reidel Publishing Company, 

Dordrecht, Holland, 1974. 
14. G. M. Constantine, Combinatorial Theory and Statistical Design, John Wiley & Sons, New York, 1987. 
15. August Leopold Crelle, Sammlung mathematischer Aufsdtze und Bemerkungen, vol. 2, Maurer, Berlin, 

1822. 
16. Cavaliere Francesco Faa di Bruno, Sullo sviluppo delle Funzioni, Annali di Scienze Matematiche e 

Fisiche 6 (1855) 479-480. 
17. Cavaliere Francesco Faa di Bruno, Note sur une nouvelle formule de calcul diff6rentiel, Quarterly J. Pure 

Appl. Math. 1 (1857) 359-360. 
18. Cavaliere Francesco Faa di Bruno, Sulle Funzioni Isobariche, Annali di Scienze Matematiche e Fisiche 7 

(1856) 76-89. 
19. Cavaliere Francesco Faa di Bruno, Theorie ge'ne'rale de l'e'limination, Lieber et Faraguet, Paris, 1859. 
20. Cavaliere Francesco Faa di Bruno, Theorie desformes binaires, librarie Brero, Torino, 1876. 
21. Antonio Fais, Nota intorno alle derivate d'ordine superiore delle funzioni di funzione, Giornale di 

Matematiche 13 (1875) 47-48. 
22. Emmanuele Fergola, Sopra due formule di calcolo differenziale, Annali di Matematica Pura edApplicata 

1 (1858) 370-378. 
23. J. C. Fields, The expression of any differential coefficient of a function of a function of any number of 

variables by aid of the corresponding differential coefficient of any n powers of the function, where n is 
the order of the differential coefficient, Amer J. Math. 11 (1889) 388-396. 

24. Harley Flanders, From Ford to Faa, this MONTHLY 108 (2001) 559-561. 
25. Roberto Frucht, A combinatorial approach to the Bell polynomials and their generalizations, in Recent 

Progress in Combinatorics, W. T. Tutte, ed., Proceedings of the Third Waterloo Conference on Combi- 
natorics, May 1968, Academic Press, New York, 1969, pp. 69-74. 

26. Roberto Frucht and Gian-Carlo Rota, Polinomios de Bell y particiones de conjuntos finitos, Scientia 126 
(1965) 5-10. 

27. R. G6tting, Differentiation des Ausdruckes xk wenn x eine Funktion irgend einer unabhanging 
Veranderlichen bedeutet, Math. Ann. 3 (1870) 276-285. 

28. Edouard Goursat, Cours dAnalyse MathMmatique, vol. 1, Gauthier-Villars, Paris, 1902. 
29. Ivor Grattan-Guinness, Convolutions in French mathematics 1800-1840, vol. 1, Birkhauser Verlag, Basel, 

1990. 
30. Charles Hermite, Cours dAnalyse de l'Ecole Polytechnique, Gauthier-Villars, Paris, 1873. 
31. E. Hess, Zur Theorie der Vertauschung der unabhangigen Variablen, Zeitschrift fur Mathematik und 

Physik 17 (1872) 1-12. 
32. Reinhold Hoppe, Theorie der independenten Darstellung der hoheren Differentialquotienten, Johann 

Ambrosius Barth, Leipzig, 1845. 
33. Reinhold Hoppe, Ueber independente Darstellung der hoheren Differentialquotienten und den Gebrauch 

des Summenzeichens, J. Reine Angew. Math. 33 (1846) 78-89. 
34. Reinhold Hoppe, Ueber independente Darstellung der h6heren Differentialquotienten, Math. Ann. 4 

(1871) 85-87. 
35. Roger A. Horn and Charles R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cam- 

bridge, 1991. 
36. Warren P. Johnson, A q-analogue of Faa di Bruno's formula, J. Combin. Theory Ser A 76 (2) (1996) 

305-314. 
37. Charles Jordan, Calculus of Finite Differences, 2nd ed., Chelsea, New York, 1950. 
38. Donald E. Knuth, The Art of Computer Programming, Volume 1. Fundamental Algorithms, Addison- 

Wesley Publishing Company, Reading, Massachusetts, 1968. 
39. Donald E. Knuth, Two notes on notation, this MONTHLY 99 (1992) 403-422. 
40. Christian Kramp, Analyse des refractions astronomiquies et terrestres, P. J. Dannbach, Strasbourg, 1799. 
41. Silvestre-Frangois Lacroix, Traite du Calcul diffrrentiel et du Calcul integral, 2e Edition, Revue et Aug- 

ment6e, vol. 1, Chez Courcier, Paris, 1810; vol. 2, Mme. Courcier, Paris, 1814; vol. 3, Mme. Courcier, 
Paris, 1819. 

42. Emil Lampe, Nachruf fur Reinhold Hoppe, Archiv der Mathematik und Physik, Generalregister zu den 
Banden 1-17 der zweiten Reihe, (1884-1900), 1901, VII-XXII. 

43. Eugene Lukacs, Applications of Faa di Bruno's formula in mathematical statistics, this MONTHLY 62 
(1955) 340-348. 

March 2002] THE CURIOUS HISTORY OF FAA DI BRUNO'S FORMULA 233 



44. Ian G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Mathematical Mono- 
graphs, Oxford University Press, Oxford, 1995. 

45. E. Marchand, Sur le changement de variables, Annales scientifiques de l'ecole normale supirieure, 
3rd series 3 (1886) 137-188. 

46. Z. A. Melzak, Companion to Concrete Mathematics, Wiley-Interscience, New York, 1973. 
47. Franz Meyer, Ueber algebraische Relationen zwischen den Entwickelungscoefficienten hoherer Differ- 

entiale, Math. Ann. 36 (1890) 453-466. 
48. Ubbo H. Meyer, Sur les derivees d'une fonction de fonction, Archiv der Mathematik und Physik 9 (1847) 

96-100. 
49. Francesco Mossa, Sulla derivazione successiva delle funzioni composte, Giornale di Matematiche 13 

(1875) 175-185. 
50. R. Most, Ueber die hoheren Differentialquotienten, Math. Ann. 4 (1871) 499-504. 
51. Sir Thomas Muir, The Theory of Determinants in the Historical Order of Development, vol. 2, Macmillan 

and Co., Limited, London, 1923. 
52. John Riordan, Derivatives of composite functions, Bull. Amer. Math. Soc. 52 (1946) 664-667. 
53. John Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, New York, 1958; Prince- 

ton University Press, Princeton, NJ, 1980. 
54. Steven Roman, The formula of Faa di Bruno, this MONTHLY 87 (1980) 805-809. 

55. Heinrich Ferdinand Scherk, De evolvendafunctione yd ydd ... ydx disquisitiones nonnullae analyticae, 
Dissertation, Friedrich-Wilhelms-Universitat, Berlin, 1823. 

56. Heinrich Ferdinand Scherk, Mathematische Abhandlungen, G. Reimer, Berlin, 1825. 
57. Oskar Schlomilch, Th6oreimes generaux sur les derivees d'un ordre quelconque de certaines fonctions 

tres g6n6rales, J. Reine Angew. Math. 32 (1846) 1-7. 
58. Oskar Schlomilch, Allgemeine Satze fur eine Theorie der hoheren Differential-Quotienten, Archiv der 

Mathematik und Physik 7 (1846) 204-214. 
59. Oskar Schlomilch, Zur Theorie der hoheren Differentialquotienten, ZeitschriftftirMathematik und Physik 

3 (1858) 65-80. 
60. Oskar Schlomilch, Compendium der Ho5heren Analysis, vol. 2, Friedrich Vieweg und Sohn, Braun- 

schweig, 1866. 
61. Frank Schmittroth, Solution to advanced problem #4782, this MONTHLY 68 (1961) 69-70. 
62. I. J. Schwatt, An Introduction to the Operations with Series, The Press of the University of Pennsylvania, 

Philadelphia, 1924. 
63. George Scott, Formule of successive differentiation, Quarterly J. Pure Appl. Math. 4 (1861) 77-92. 
64. Richard P. Stanley, Enumerative Combinatorics, Volume 1, Cambridge Studies in Advanced Mathemat- 

ics 49, Cambridge University Press, Cambridge, 1997. 
65. Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge Studies in Advanced Mathemat- 

ics 62, Cambridge University Press, Cambridge, 1999. 
66. Charle Jean de la Vallee Poussin, Cours dAnalyse Infinitesimale, 3rd ed., vol. 1, Gauthier-Villars, Paris, 

1914. 
67. A. Voss, Differential- und Integralrechnung, in Encyklopddie der Mathematischen Wissenschaften, IIIl/l, 

B. G. Teubner, Leipzig, 1899, pp. 54-134. 
68. Winston C. Yang, Derivatives are essentially integer partitions, Discrete Math. 222 (2000) 235-245. 
69. Doron Zeilberger, Toward a combinatorial proof of the Jacobian conjecture?, in Combinatoire 

enumerative, Lecture Notes in Mathematics 1234, Springer-Verlag, Berlin, 1986, pp. 370-380. 

WARREN P. JOHNSON was an undergraduate at the University of Minnesota. He received his Ph.D. from 
the University of Wisconsin under the direction of Richard Askey. He has taught at Penn State University, 
Beloit College, and the University of Wisconsin, and is now at Bates College. He always enjoyed the historical 
notes in Askey's special functions courses, and this paper satisfies the vague ambition he had of discovering 
such a thing himself some day. His other research interests are in combinatorics and q-series. 
Bates College, Lewiston, ME 04240 
wjohnson@bates.edu 

234 ? THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 109 


	Article Contents
	p. 217
	p. 218
	p. 219
	p. 220
	p. 221
	p. 222
	p. 223
	p. 224
	p. 225
	p. 226
	p. 227
	p. 228
	p. 229
	p. 230
	p. 231
	p. 232
	p. 233
	p. 234

	Issue Table of Contents
	American Mathematical Monthly, Vol. 109, No. 3 (Mar., 2002), pp. 217-314
	Front Matter
	The Curious History of Faà di Bruno's Formula [pp. 217-234]
	Laplace's Integral, the Gamma Function, and beyond [pp. 235-245]
	Associativity of the Secant Method [pp. 246-257]
	Renewal Systems, Sharp-Eyed Snakes, and Shifts of Finite Type [pp. 258-272]
	Notes
	Combinatorics of Higher Derivatives of Inverses [pp. 273-277]
	The Hankel Determinant of Exponential Polynomials: A Very Short Proof and a New Result Concerning Euler Numbers [pp. 277-278]
	Dedekind Sums and Uniform Distributions [pp. 279-284]
	R Has No Root [p. 285]

	The Evolution of...
	The Continuum Problem [pp. 286-297]

	Problems and Solutions
	Problems
	10928 [p. 298]
	10929 [p. 298]
	10930 [p. 298]
	10931 [p. 298]
	10932 [pp. 298-299]
	10933 [p. 299]
	10934 [p. 299]

	Solutions
	Minimizing the Sum of Negative Powers of Orders of Group Elements: 10775 [p. 299]
	Squashing a Matrix by Adding an Imaginary Part: 10776 [p. 300]
	A Tree-Counting Identity: 10781 [pp. 300-301]
	Divisibility Involving Random Sets of Integers: 10782 [pp. 301-302]
	A Recursively Defined Sequence of Functions: 10785 [pp. 302-304]
	Triperfect Numbers: 10800 [pp. 304-305]
	The Median Meets the Circle of Appolonius: 10862 [p. 305]


	Reviews
	Review: untitled [pp. 306-309]

	Telegraphic Reviews [pp. 310-312]
	Editor's Endnotes [pp. 313-314]
	Back Matter





